Browse Source

kpu gets important parameters to run model by reading json file

pull/5/head
chunyexixiaoyu 11 months ago
parent
commit
1afdd8c056
  1. 1
      .gitignore
  2. 3110
      APP_Framework/Applications/knowing_app/face_detect/cJSON.c
  3. 293
      APP_Framework/Applications/knowing_app/face_detect/cJSON.h
  4. 31
      APP_Framework/Applications/knowing_app/face_detect/detect.json
  5. 391
      APP_Framework/Applications/knowing_app/face_detect/face_detect.c
  6. 214
      APP_Framework/Framework/knowing/kpu-postprocessing/yolov2/region_layer.c
  7. 2
      APP_Framework/Framework/knowing/kpu-postprocessing/yolov2/region_layer.h
  8. 39
      Ubiquitous/RT_Thread/bsp/k210/.config
  9. 228
      Ubiquitous/RT_Thread/bsp/k210/.gitignore
  10. 26
      Ubiquitous/RT_Thread/bsp/k210/rtconfig.h

1
.gitignore

@ -1,2 +1,3 @@
*.vscode
*.o
.DS_Store

3110
APP_Framework/Applications/knowing_app/face_detect/cJSON.c

File diff suppressed because it is too large

293
APP_Framework/Applications/knowing_app/face_detect/cJSON.h

@ -0,0 +1,293 @@
/*
Copyright (c) 2009-2017 Dave Gamble and cJSON contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef cJSON__h
#define cJSON__h
#ifdef __cplusplus
extern "C"
{
#endif
#if !defined(__WINDOWS__) && (defined(WIN32) || defined(WIN64) || defined(_MSC_VER) || defined(_WIN32))
#define __WINDOWS__
#endif
#ifdef __WINDOWS__
/* When compiling for windows, we specify a specific calling convention to avoid issues where we are being called from a project with a different default calling convention. For windows you have 3 define options:
CJSON_HIDE_SYMBOLS - Define this in the case where you don't want to ever dllexport symbols
CJSON_EXPORT_SYMBOLS - Define this on library build when you want to dllexport symbols (default)
CJSON_IMPORT_SYMBOLS - Define this if you want to dllimport symbol
For *nix builds that support visibility attribute, you can define similar behavior by
setting default visibility to hidden by adding
-fvisibility=hidden (for gcc)
or
-xldscope=hidden (for sun cc)
to CFLAGS
then using the CJSON_API_VISIBILITY flag to "export" the same symbols the way CJSON_EXPORT_SYMBOLS does
*/
#define CJSON_CDECL __cdecl
#define CJSON_STDCALL __stdcall
/* export symbols by default, this is necessary for copy pasting the C and header file */
#if !defined(CJSON_HIDE_SYMBOLS) && !defined(CJSON_IMPORT_SYMBOLS) && !defined(CJSON_EXPORT_SYMBOLS)
#define CJSON_EXPORT_SYMBOLS
#endif
#if defined(CJSON_HIDE_SYMBOLS)
#define CJSON_PUBLIC(type) type CJSON_STDCALL
#elif defined(CJSON_EXPORT_SYMBOLS)
#define CJSON_PUBLIC(type) __declspec(dllexport) type CJSON_STDCALL
#elif defined(CJSON_IMPORT_SYMBOLS)
#define CJSON_PUBLIC(type) __declspec(dllimport) type CJSON_STDCALL
#endif
#else /* !__WINDOWS__ */
#define CJSON_CDECL
#define CJSON_STDCALL
#if (defined(__GNUC__) || defined(__SUNPRO_CC) || defined (__SUNPRO_C)) && defined(CJSON_API_VISIBILITY)
#define CJSON_PUBLIC(type) __attribute__((visibility("default"))) type
#else
#define CJSON_PUBLIC(type) type
#endif
#endif
/* project version */
#define CJSON_VERSION_MAJOR 1
#define CJSON_VERSION_MINOR 7
#define CJSON_VERSION_PATCH 14
#include <stddef.h>
/* cJSON Types: */
#define cJSON_Invalid (0)
#define cJSON_False (1 << 0)
#define cJSON_True (1 << 1)
#define cJSON_NULL (1 << 2)
#define cJSON_Number (1 << 3)
#define cJSON_String (1 << 4)
#define cJSON_Array (1 << 5)
#define cJSON_Object (1 << 6)
#define cJSON_Raw (1 << 7) /* raw json */
#define cJSON_IsReference 256
#define cJSON_StringIsConst 512
/* The cJSON structure: */
typedef struct cJSON
{
/* next/prev allow you to walk array/object chains. Alternatively, use GetArraySize/GetArrayItem/GetObjectItem */
struct cJSON *next;
struct cJSON *prev;
/* An array or object item will have a child pointer pointing to a chain of the items in the array/object. */
struct cJSON *child;
/* The type of the item, as above. */
int type;
/* The item's string, if type==cJSON_String and type == cJSON_Raw */
char *valuestring;
/* writing to valueint is DEPRECATED, use cJSON_SetNumberValue instead */
int valueint;
/* The item's number, if type==cJSON_Number */
double valuedouble;
/* The item's name string, if this item is the child of, or is in the list of subitems of an object. */
char *string;
} cJSON;
typedef struct cJSON_Hooks
{
/* malloc/free are CDECL on Windows regardless of the default calling convention of the compiler, so ensure the hooks allow passing those functions directly. */
void *(CJSON_CDECL *malloc_fn)(size_t sz);
void (CJSON_CDECL *free_fn)(void *ptr);
} cJSON_Hooks;
typedef int cJSON_bool;
/* Limits how deeply nested arrays/objects can be before cJSON rejects to parse them.
* This is to prevent stack overflows. */
#ifndef CJSON_NESTING_LIMIT
#define CJSON_NESTING_LIMIT 1000
#endif
/* returns the version of cJSON as a string */
CJSON_PUBLIC(const char*) cJSON_Version(void);
/* Supply malloc, realloc and free functions to cJSON */
CJSON_PUBLIC(void) cJSON_InitHooks(cJSON_Hooks* hooks);
/* Memory Management: the caller is always responsible to free the results from all variants of cJSON_Parse (with cJSON_Delete) and cJSON_Print (with stdlib free, cJSON_Hooks.free_fn, or cJSON_free as appropriate). The exception is cJSON_PrintPreallocated, where the caller has full responsibility of the buffer. */
/* Supply a block of JSON, and this returns a cJSON object you can interrogate. */
CJSON_PUBLIC(cJSON *) cJSON_Parse(const char *value);
CJSON_PUBLIC(cJSON *) cJSON_ParseWithLength(const char *value, size_t buffer_length);
/* ParseWithOpts allows you to require (and check) that the JSON is null terminated, and to retrieve the pointer to the final byte parsed. */
/* If you supply a ptr in return_parse_end and parsing fails, then return_parse_end will contain a pointer to the error so will match cJSON_GetErrorPtr(). */
CJSON_PUBLIC(cJSON *) cJSON_ParseWithOpts(const char *value, const char **return_parse_end, cJSON_bool require_null_terminated);
CJSON_PUBLIC(cJSON *) cJSON_ParseWithLengthOpts(const char *value, size_t buffer_length, const char **return_parse_end, cJSON_bool require_null_terminated);
/* Render a cJSON entity to text for transfer/storage. */
CJSON_PUBLIC(char *) cJSON_Print(const cJSON *item);
/* Render a cJSON entity to text for transfer/storage without any formatting. */
CJSON_PUBLIC(char *) cJSON_PrintUnformatted(const cJSON *item);
/* Render a cJSON entity to text using a buffered strategy. prebuffer is a guess at the final size. guessing well reduces reallocation. fmt=0 gives unformatted, =1 gives formatted */
CJSON_PUBLIC(char *) cJSON_PrintBuffered(const cJSON *item, int prebuffer, cJSON_bool fmt);
/* Render a cJSON entity to text using a buffer already allocated in memory with given length. Returns 1 on success and 0 on failure. */
/* NOTE: cJSON is not always 100% accurate in estimating how much memory it will use, so to be safe allocate 5 bytes more than you actually need */
CJSON_PUBLIC(cJSON_bool) cJSON_PrintPreallocated(cJSON *item, char *buffer, const int length, const cJSON_bool format);
/* Delete a cJSON entity and all subentities. */
CJSON_PUBLIC(void) cJSON_Delete(cJSON *item);
/* Returns the number of items in an array (or object). */
CJSON_PUBLIC(int) cJSON_GetArraySize(const cJSON *array);
/* Retrieve item number "index" from array "array". Returns NULL if unsuccessful. */
CJSON_PUBLIC(cJSON *) cJSON_GetArrayItem(const cJSON *array, int index);
/* Get item "string" from object. Case insensitive. */
CJSON_PUBLIC(cJSON *) cJSON_GetObjectItem(const cJSON * const object, const char * const string);
CJSON_PUBLIC(cJSON *) cJSON_GetObjectItemCaseSensitive(const cJSON * const object, const char * const string);
CJSON_PUBLIC(cJSON_bool) cJSON_HasObjectItem(const cJSON *object, const char *string);
/* For analysing failed parses. This returns a pointer to the parse error. You'll probably need to look a few chars back to make sense of it. Defined when cJSON_Parse() returns 0. 0 when cJSON_Parse() succeeds. */
CJSON_PUBLIC(const char *) cJSON_GetErrorPtr(void);
/* Check item type and return its value */
CJSON_PUBLIC(char *) cJSON_GetStringValue(const cJSON * const item);
CJSON_PUBLIC(double) cJSON_GetNumberValue(const cJSON * const item);
/* These functions check the type of an item */
CJSON_PUBLIC(cJSON_bool) cJSON_IsInvalid(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsFalse(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsTrue(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsBool(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsNull(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsNumber(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsString(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsArray(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsObject(const cJSON * const item);
CJSON_PUBLIC(cJSON_bool) cJSON_IsRaw(const cJSON * const item);
/* These calls create a cJSON item of the appropriate type. */
CJSON_PUBLIC(cJSON *) cJSON_CreateNull(void);
CJSON_PUBLIC(cJSON *) cJSON_CreateTrue(void);
CJSON_PUBLIC(cJSON *) cJSON_CreateFalse(void);
CJSON_PUBLIC(cJSON *) cJSON_CreateBool(cJSON_bool boolean);
CJSON_PUBLIC(cJSON *) cJSON_CreateNumber(double num);
CJSON_PUBLIC(cJSON *) cJSON_CreateString(const char *string);
/* raw json */
CJSON_PUBLIC(cJSON *) cJSON_CreateRaw(const char *raw);
CJSON_PUBLIC(cJSON *) cJSON_CreateArray(void);
CJSON_PUBLIC(cJSON *) cJSON_CreateObject(void);
/* Create a string where valuestring references a string so
* it will not be freed by cJSON_Delete */
CJSON_PUBLIC(cJSON *) cJSON_CreateStringReference(const char *string);
/* Create an object/array that only references it's elements so
* they will not be freed by cJSON_Delete */
CJSON_PUBLIC(cJSON *) cJSON_CreateObjectReference(const cJSON *child);
CJSON_PUBLIC(cJSON *) cJSON_CreateArrayReference(const cJSON *child);
/* These utilities create an Array of count items.
* The parameter count cannot be greater than the number of elements in the number array, otherwise array access will be out of bounds.*/
CJSON_PUBLIC(cJSON *) cJSON_CreateIntArray(const int *numbers, int count);
CJSON_PUBLIC(cJSON *) cJSON_CreateFloatArray(const float *numbers, int count);
CJSON_PUBLIC(cJSON *) cJSON_CreateDoubleArray(const double *numbers, int count);
CJSON_PUBLIC(cJSON *) cJSON_CreateStringArray(const char *const *strings, int count);
/* Append item to the specified array/object. */
CJSON_PUBLIC(cJSON_bool) cJSON_AddItemToArray(cJSON *array, cJSON *item);
CJSON_PUBLIC(cJSON_bool) cJSON_AddItemToObject(cJSON *object, const char *string, cJSON *item);
/* Use this when string is definitely const (i.e. a literal, or as good as), and will definitely survive the cJSON object.
* WARNING: When this function was used, make sure to always check that (item->type & cJSON_StringIsConst) is zero before
* writing to `item->string` */
CJSON_PUBLIC(cJSON_bool) cJSON_AddItemToObjectCS(cJSON *object, const char *string, cJSON *item);
/* Append reference to item to the specified array/object. Use this when you want to add an existing cJSON to a new cJSON, but don't want to corrupt your existing cJSON. */
CJSON_PUBLIC(cJSON_bool) cJSON_AddItemReferenceToArray(cJSON *array, cJSON *item);
CJSON_PUBLIC(cJSON_bool) cJSON_AddItemReferenceToObject(cJSON *object, const char *string, cJSON *item);
/* Remove/Detach items from Arrays/Objects. */
CJSON_PUBLIC(cJSON *) cJSON_DetachItemViaPointer(cJSON *parent, cJSON * const item);
CJSON_PUBLIC(cJSON *) cJSON_DetachItemFromArray(cJSON *array, int which);
CJSON_PUBLIC(void) cJSON_DeleteItemFromArray(cJSON *array, int which);
CJSON_PUBLIC(cJSON *) cJSON_DetachItemFromObject(cJSON *object, const char *string);
CJSON_PUBLIC(cJSON *) cJSON_DetachItemFromObjectCaseSensitive(cJSON *object, const char *string);
CJSON_PUBLIC(void) cJSON_DeleteItemFromObject(cJSON *object, const char *string);
CJSON_PUBLIC(void) cJSON_DeleteItemFromObjectCaseSensitive(cJSON *object, const char *string);
/* Update array items. */
CJSON_PUBLIC(cJSON_bool) cJSON_InsertItemInArray(cJSON *array, int which, cJSON *newitem); /* Shifts pre-existing items to the right. */
CJSON_PUBLIC(cJSON_bool) cJSON_ReplaceItemViaPointer(cJSON * const parent, cJSON * const item, cJSON * replacement);
CJSON_PUBLIC(cJSON_bool) cJSON_ReplaceItemInArray(cJSON *array, int which, cJSON *newitem);
CJSON_PUBLIC(cJSON_bool) cJSON_ReplaceItemInObject(cJSON *object,const char *string,cJSON *newitem);
CJSON_PUBLIC(cJSON_bool) cJSON_ReplaceItemInObjectCaseSensitive(cJSON *object,const char *string,cJSON *newitem);
/* Duplicate a cJSON item */
CJSON_PUBLIC(cJSON *) cJSON_Duplicate(const cJSON *item, cJSON_bool recurse);
/* Duplicate will create a new, identical cJSON item to the one you pass, in new memory that will
* need to be released. With recurse!=0, it will duplicate any children connected to the item.
* The item->next and ->prev pointers are always zero on return from Duplicate. */
/* Recursively compare two cJSON items for equality. If either a or b is NULL or invalid, they will be considered unequal.
* case_sensitive determines if object keys are treated case sensitive (1) or case insensitive (0) */
CJSON_PUBLIC(cJSON_bool) cJSON_Compare(const cJSON * const a, const cJSON * const b, const cJSON_bool case_sensitive);
/* Minify a strings, remove blank characters(such as ' ', '\t', '\r', '\n') from strings.
* The input pointer json cannot point to a read-only address area, such as a string constant,
* but should point to a readable and writable adress area. */
CJSON_PUBLIC(void) cJSON_Minify(char *json);
/* Helper functions for creating and adding items to an object at the same time.
* They return the added item or NULL on failure. */
CJSON_PUBLIC(cJSON*) cJSON_AddNullToObject(cJSON * const object, const char * const name);
CJSON_PUBLIC(cJSON*) cJSON_AddTrueToObject(cJSON * const object, const char * const name);
CJSON_PUBLIC(cJSON*) cJSON_AddFalseToObject(cJSON * const object, const char * const name);
CJSON_PUBLIC(cJSON*) cJSON_AddBoolToObject(cJSON * const object, const char * const name, const cJSON_bool boolean);
CJSON_PUBLIC(cJSON*) cJSON_AddNumberToObject(cJSON * const object, const char * const name, const double number);
CJSON_PUBLIC(cJSON*) cJSON_AddStringToObject(cJSON * const object, const char * const name, const char * const string);
CJSON_PUBLIC(cJSON*) cJSON_AddRawToObject(cJSON * const object, const char * const name, const char * const raw);
CJSON_PUBLIC(cJSON*) cJSON_AddObjectToObject(cJSON * const object, const char * const name);
CJSON_PUBLIC(cJSON*) cJSON_AddArrayToObject(cJSON * const object, const char * const name);
/* When assigning an integer value, it needs to be propagated to valuedouble too. */
#define cJSON_SetIntValue(object, number) ((object) ? (object)->valueint = (object)->valuedouble = (number) : (number))
/* helper for the cJSON_SetNumberValue macro */
CJSON_PUBLIC(double) cJSON_SetNumberHelper(cJSON *object, double number);
#define cJSON_SetNumberValue(object, number) ((object != NULL) ? cJSON_SetNumberHelper(object, (double)number) : (number))
/* Change the valuestring of a cJSON_String object, only takes effect when type of object is cJSON_String */
CJSON_PUBLIC(char*) cJSON_SetValuestring(cJSON *object, const char *valuestring);
/* Macro for iterating over an array or object */
#define cJSON_ArrayForEach(element, array) for(element = (array != NULL) ? (array)->child : NULL; element != NULL; element = element->next)
/* malloc/free objects using the malloc/free functions that have been set with cJSON_InitHooks */
CJSON_PUBLIC(void *) cJSON_malloc(size_t size);
CJSON_PUBLIC(void) cJSON_free(void *object);
#ifdef __cplusplus
}
#endif
#endif

31
APP_Framework/Applications/knowing_app/face_detect/detect.json

@ -0,0 +1,31 @@
{
"net_input_size": [
240,
320
],
"net_output_shape": [
20,
15,
30
],
"sensor_output_size": [
240,
320
],
"anchors": [
1.889,
2.5245,
2.9465,
3.94056,
3.99987,
5.3658,
5.155437,
6.92275,
6.718375,
9.01025
],
"kmodel_path": "/kmodel/detect.kmodel",
"kmodel_size": 388776,
"obj_thresh": 0.7,
"nms_thresh": 0.3
}

391
APP_Framework/Applications/knowing_app/face_detect/face_detect.c

@ -1,118 +1,225 @@
#include <transform.h>
#include"region_layer.h"
#define SHOW_RGB_BUF_SIZE (320*240*2)
#define AI_KPU_RGB_BUF_SIZE (320*240*3)
#define KMODEL_SIZE (388776) //face model size
#define ANCHOR_NUM 5
#define KPUIMAGEWIDTH (320)
#define KPUIMAGEHEIGHT (240)
#include "cJSON.h"
#include "region_layer.h"
#define ANCHOR_NUM 5
#define STACK_SIZE (128 * 1024)
#define JSON_FILE_PATH "/kmodel/detect.json"
#define JSON_BUFFER_SIZE (4 * 1024)
static float anchor[ANCHOR_NUM * 2] = {1.889,2.5245, 2.9465,3.94056, 3.99987,5.3658, 5.155437,6.92275, 6.718375,9.01025};
// params from json
float anchor[ANCHOR_NUM * 2] = {};
int net_output_shape[3] = {};
int net_input_size[2] = {};
int sensor_output_size[2] = {};
char kmodel_path[127] = "";
int kmodel_size = 0;
float obj_thresh = 1.0;
float nms_thresh = 0.0;
// float anchor[ANCHOR_NUM * 2] = {1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025};
// int net_output_shape[3] = {20, 15, 30};
// int net_input_size[2] = {240, 320};
// int sensor_output_size[2] = {240, 320};
// char kmodel_path[127] = "/kmodel/detect.kmodel";
// int kmodel_size = 388776;
// float obj_thresh = 0.7;
// float nms_thresh = 0.3;
#define THREAD_PRIORITY_FACE_D (11)
static pthread_t facetid = 0;
static void* thread_face_detcet_entry(void *parameter);
#define THREAD_PRIORITY_FACE_D (11)
static pthread_t facetid = 0;
static void *thread_face_detcet_entry(void *parameter);
static int g_fd = 0;
static int kmodel_fd = 0;
static int if_exit = 0;
static unsigned char * showbuffer = NULL ;
static unsigned char * kpurgbbuffer = NULL ;
static int if_exit = 0;
static unsigned char *showbuffer = NULL;
static unsigned char *kpurgbbuffer = NULL;
static _ioctl_shoot_para shoot_para_t = {0};
unsigned char * model_data = NULL; //kpu data load memory
unsigned char *model_data_align = NULL;
unsigned char *model_data = NULL; // kpu data load memory
unsigned char *model_data_align = NULL;
kpu_model_context_t face_detect_task;
static region_layer_t face_detect_rl;
static obj_info_t face_detect_info;
volatile uint32_t g_ai_done_flag;
static void ai_done(void *ctx)
static void ai_done(void *ctx) { g_ai_done_flag = 1; }
static void param_parse()
{
g_ai_done_flag = 1;
}
int fin;
char buffer[JSON_BUFFER_SIZE] = "";
// char *buffer;
// if (NULL != (buffer = (char*)malloc(JSON_BUFFER_SIZE * sizeof(char)))) {
// memset(buffer, 0, JSON_BUFFER_SIZE * sizeof(char));
// } else {
// printf("Json buffer malloc failed!");
// exit(-1);
// }
int array_size;
cJSON *json_obj;
cJSON *json_item;
cJSON *json_array_item;
fin = open(JSON_FILE_PATH, O_RDONLY);
if (!fin) {
printf("Error open file %s", JSON_FILE_PATH);
exit(-1);
}
read(fin, buffer, sizeof(buffer));
close(fin);
// read json string
json_obj = cJSON_Parse(buffer);
// free(buffer);
char *json_print_str = cJSON_Print(json_obj);
printf("Json file content: \n%s\n", json_print_str);
cJSON_free(json_print_str);
// get anchors
json_item = cJSON_GetObjectItem(json_obj, "anchors");
array_size = cJSON_GetArraySize(json_item);
if (ANCHOR_NUM * 2 != array_size) {
printf("Expect anchor size: %d, got %d in json file", ANCHOR_NUM * 2, array_size);
exit(-1);
} else {
printf("Got %d anchors from json file\n", ANCHOR_NUM);
}
for (int i = 0; i < ANCHOR_NUM * 2; i++) {
json_array_item = cJSON_GetArrayItem(json_item, i);
anchor[i] = json_array_item->valuedouble;
printf("%d: %f\n", i, anchor[i]);
}
// net_input_size
json_item = cJSON_GetObjectItem(json_obj, "net_input_size");
array_size = cJSON_GetArraySize(json_item);
if (2 != array_size) {
printf("Expect net_input_size: %d, got %d in json file", 2, array_size);
exit(-1);
} else {
printf("Got %d net_input_size from json file\n", 2);
}
for (int i = 0; i < 2; i++) {
json_array_item = cJSON_GetArrayItem(json_item, i);
net_input_size[i] = json_array_item->valueint;
printf("%d: %d\n", i, net_input_size[i]);
}
// net_output_shape
json_item = cJSON_GetObjectItem(json_obj, "net_output_shape");
array_size = cJSON_GetArraySize(json_item);
if (3 != array_size) {
printf("Expect net_output_shape: %d, got %d in json file", 3, array_size);
exit(-1);
} else {
printf("Got %d net_output_shape from json file\n", 3);
}
for (int i = 0; i < 3; i++) {
json_array_item = cJSON_GetArrayItem(json_item, i);
net_output_shape[i] = json_array_item->valueint;
printf("%d: %d\n", i, net_output_shape[i]);
}
// sensor_output_size
json_item = cJSON_GetObjectItem(json_obj, "sensor_output_size");
array_size = cJSON_GetArraySize(json_item);
if (2 != array_size) {
printf("Expect sensor_output_size: %d, got %d in json file", 2, array_size);
exit(-1);
} else {
printf("Got %d sensor_output_size from json file\n", 2);
}
for (int i = 0; i < 2; i++) {
json_array_item = cJSON_GetArrayItem(json_item, i);
sensor_output_size[i] = json_array_item->valueint;
printf("%d: %d\n", i, sensor_output_size[i]);
}
// kmodel_path
json_item = cJSON_GetObjectItem(json_obj, "kmodel_path");
memcpy(kmodel_path, json_item->valuestring, strlen(json_item->valuestring));
printf("Got kmodel_path: %s\n", kmodel_path);
// kmodel_size
json_item = cJSON_GetObjectItem(json_obj, "kmodel_size");
kmodel_size = json_item->valueint;
printf("Got kmodel_size: %d\n", kmodel_size);
// obj_thresh
json_item = cJSON_GetObjectItem(json_obj, "obj_thresh");
obj_thresh = json_item->valuedouble;
printf("Got obj_thresh: %f\n", obj_thresh);
// nms_thresh
json_item = cJSON_GetObjectItem(json_obj, "nms_thresh");
nms_thresh = json_item->valuedouble;
printf("Got nms_thresh: %f\n", nms_thresh);
cJSON_Delete(json_obj);
return;
}
void face_detect()
{
int ret = 0;
int result = 0;
int size = 0;
g_fd = open("/dev/ov2640",O_RDONLY);
if(g_fd < 0)
{
param_parse();
g_fd = open("/dev/ov2640", O_RDONLY);
if (g_fd < 0) {
printf("open ov2640 fail !!");
return;
}
showbuffer = (unsigned char*)malloc(SHOW_RGB_BUF_SIZE);
if(NULL ==showbuffer)
{
showbuffer = (unsigned char *)malloc(sensor_output_size[0] * sensor_output_size[1] * 2);
if (NULL == showbuffer) {
close(g_fd);
printf("showbuffer apply memory fail !!");
return ;
return;
}
kpurgbbuffer = (unsigned char*)malloc(AI_KPU_RGB_BUF_SIZE);
if(NULL ==kpurgbbuffer)
{
kpurgbbuffer = (unsigned char *)malloc(net_input_size[0] * net_input_size[1] * 3);
if (NULL == kpurgbbuffer) {
close(g_fd);
free(showbuffer);
printf("kpurgbbuffer apply memory fail !!");
return ;
return;
}
model_data = (unsigned char *)malloc(KMODEL_SIZE + 255);
if(NULL ==model_data)
{
model_data = (unsigned char *)malloc(kmodel_size + 255);
if (NULL == model_data) {
free(showbuffer);
free(kpurgbbuffer);
close(g_fd);
printf("model_data apply memory fail !!");
return ;
return;
}
memset(model_data,0,KMODEL_SIZE + 255);
memset(showbuffer,0,SHOW_RGB_BUF_SIZE);
memset(kpurgbbuffer,0,AI_KPU_RGB_BUF_SIZE);
memset(model_data, 0, kmodel_size + 255);
memset(showbuffer, 0, sensor_output_size[0] * sensor_output_size[1] * 2);
memset(kpurgbbuffer, 0, net_input_size[0] * net_input_size[1] * 3);
shoot_para_t.pdata = (unsigned int *)(showbuffer);
shoot_para_t.length = SHOW_RGB_BUF_SIZE;
shoot_para_t.length = (size_t)(sensor_output_size[0] * sensor_output_size[1] * 2);
/*
load memory
load memory
*/
kmodel_fd = open("/kmodel/detect.kmodel",O_RDONLY);
if(kmodel_fd <0)
{
printf("open kmodel fail");
close(g_fd);
free(showbuffer);
free(kpurgbbuffer);
free(model_data);
return;
}
else
{
size = read(kmodel_fd, model_data, KMODEL_SIZE);
if(size != KMODEL_SIZE)
{
printf("read kmodel error size %d\n",size);
kmodel_fd = open(kmodel_path, O_RDONLY);
if (kmodel_fd < 0) {
printf("open kmodel fail");
close(g_fd);
free(showbuffer);
free(kpurgbbuffer);
free(model_data);
return;
} else {
size = read(kmodel_fd, model_data, kmodel_size);
if (size != kmodel_size) {
printf("read kmodel error size %d\n", size);
close(g_fd);
close(kmodel_fd);
free(showbuffer);
free(kpurgbbuffer);
free(model_data);
return;
}
else
{
printf("read kmodel success \n");
}
}
unsigned char *model_data_align = (unsigned char *)(((unsigned int)model_data+255)&(~255));
dvp_set_ai_addr((uint32_t)kpurgbbuffer, (uint32_t)(kpurgbbuffer + 320 * 240), (uint32_t)(kpurgbbuffer + 320 * 240 * 2));
if (kpu_load_kmodel(&face_detect_task, model_data_align) != 0)
{
} else {
printf("read kmodel success \n");
}
}
unsigned char *model_data_align = (unsigned char *)(((unsigned int)model_data + 255) & (~255));
dvp_set_ai_addr((uint32_t)kpurgbbuffer, (uint32_t)(kpurgbbuffer + net_input_size[0] * net_input_size[1]),
(uint32_t)(kpurgbbuffer + net_input_size[0] * net_input_size[1] * 2));
if (kpu_load_kmodel(&face_detect_task, model_data_align) != 0) {
printf("\nmodel init error\n");
close(g_fd);
close(kmodel_fd);
@ -123,131 +230,121 @@ void face_detect()
}
face_detect_rl.anchor_number = ANCHOR_NUM;
face_detect_rl.anchor = anchor;
face_detect_rl.threshold = 0.7;
face_detect_rl.nms_value = 0.3;
result = region_layer_init(&face_detect_rl, 20, 15, 30, KPUIMAGEWIDTH, KPUIMAGEHEIGHT);
printf("region_layer_init result %d \n\r",result);
size_t stack_size = 32*1024;
pthread_attr_t attr; /* 线程属性 */
struct sched_param prio; /* 线程优先级 */
prio.sched_priority = 8; /* 优先级设置为 8 */
pthread_attr_init(&attr); /* 先使用默认值初始化属性 */
pthread_attr_setschedparam(&attr,&prio); /* 修改属性对应的优先级 */
face_detect_rl.threshold = obj_thresh;
face_detect_rl.nms_value = nms_thresh;
result = region_layer_init(&face_detect_rl, net_output_shape[0], net_output_shape[1], net_output_shape[2],
net_input_size[1], net_input_size[0]);
printf("region_layer_init result %d \n\r", result);
size_t stack_size = STACK_SIZE;
pthread_attr_t attr; /* 线程属性 */
struct sched_param prio; /* 线程优先级 */
prio.sched_priority = 8; /* 优先级设置为 8 */
pthread_attr_init(&attr); /* 先使用默认值初始化属性 */
pthread_attr_setschedparam(&attr, &prio); /* 修改属性对应的优先级 */
pthread_attr_setstacksize(&attr, stack_size);
/* 创建线程 1, 属性为 attr,入口函数是 thread_entry,入口函数参数是 1 */
result = pthread_create(&facetid,&attr,thread_face_detcet_entry,NULL);
if (0 == result)
{
result = pthread_create(&facetid, &attr, thread_face_detcet_entry, NULL);
if (0 == result) {
printf("thread_face_detcet_entry successfully!\n");
}
else
{
printf("thread_face_detcet_entry failed! error code is %d\n",result);
} else {
printf("thread_face_detcet_entry failed! error code is %d\n", result);
close(g_fd);
}
}
}
#ifdef __RT_THREAD_H__
MSH_CMD_EXPORT(face_detect,face detect task);
MSH_CMD_EXPORT(face_detect, face detect task);
#endif
static void* thread_face_detcet_entry(void *parameter)
{
extern void lcd_draw_picture(uint16_t x1, uint16_t y1, uint16_t width, uint16_t height, uint32_t *ptr);
static void *thread_face_detcet_entry(void *parameter)
{
extern void lcd_draw_picture(uint16_t x1, uint16_t y1, uint16_t width, uint16_t height, uint32_t * ptr);
printf("thread_face_detcet_entry start!\n");
int ret = 0;
//sysctl_enable_irq();
while(1)
{
//memset(showbuffer,0,320*240*2);
// sysctl_enable_irq();
while (1) {
// memset(showbuffer,0,320*240*2);
g_ai_done_flag = 0;
ret = ioctl(g_fd,IOCTRL_CAMERA_START_SHOT,&shoot_para_t);
if(RT_ERROR == ret)
{
ret = ioctl(g_fd, IOCTRL_CAMERA_START_SHOT, &shoot_para_t);
if (RT_ERROR == ret) {
printf("ov2640 can't wait event flag");
rt_free(showbuffer);
close(g_fd);
pthread_exit(NULL);
pthread_exit(NULL);
return NULL;
}
kpu_run_kmodel(&face_detect_task, kpurgbbuffer, DMAC_CHANNEL5, ai_done, NULL);
while(!g_ai_done_flag);
while (!g_ai_done_flag)
;
float *output;
size_t output_size;
kpu_get_output(&face_detect_task, 0, (uint8_t **)&output, &output_size);
face_detect_rl.input = output;
face_detect_rl.input = output;
region_layer_run(&face_detect_rl, &face_detect_info);
/* display result */
#ifdef BSP_USING_LCD
for (int face_cnt = 0; face_cnt < face_detect_info.obj_number; face_cnt++)
{
draw_edge((uint32_t *)showbuffer, &face_detect_info, face_cnt, 0xF800);
/* display result */
#ifdef BSP_USING_LCD
for (int face_cnt = 0; face_cnt < face_detect_info.obj_number; face_cnt++) {
draw_edge((uint32_t *)showbuffer, &face_detect_info, face_cnt, 0xF800, (uint16_t)sensor_output_size[1],
(uint16_t)sensor_output_size[0]);
printf("%d: (%d, %d, %d, %d) cls: %d conf: %f\t", face_cnt, face_detect_info.obj[face_cnt].x1,
face_detect_info.obj[face_cnt].y1, face_detect_info.obj[face_cnt].x2, face_detect_info.obj[face_cnt].y2,
face_detect_info.obj[face_cnt].class_id, face_detect_info.obj[face_cnt].prob);
}
if (0 != face_detect_info.obj_number) printf("\n");
lcd_draw_picture(0, 0, (uint16_t)sensor_output_size[1], (uint16_t)sensor_output_size[0], (unsigned int *)showbuffer);
#endif
usleep(1);
if (1 == if_exit) {
if_exit = 0;
printf("thread_face_detcet_entry exit");
pthread_exit(NULL);
}
lcd_draw_picture(0, 0, 320, 240, (unsigned int*)showbuffer);
#endif
usleep(1);
if(1 == if_exit)
{
if_exit = 0;
printf("thread_face_detcet_entry exit");
pthread_exit(NULL);
}
}
}
void face_detect_delete()
{
if(showbuffer != NULL)
{
if (showbuffer != NULL) {
int ret = 0;
close(g_fd);
close(kmodel_fd);
free(showbuffer);
free(kpurgbbuffer);
free(model_data);
printf("face detect task cancel!!! ret %d ",ret);
printf("face detect task cancel!!! ret %d ", ret);
if_exit = 1;
}
}
#ifdef __RT_THREAD_H__
MSH_CMD_EXPORT(face_detect_delete,face detect task delete);
MSH_CMD_EXPORT(face_detect_delete, face detect task delete);
#endif
void kmodel_load(unsigned char * model_data)
void kmodel_load(unsigned char *model_data)
{
int kmodel_fd = 0;
int size = 0;
kmodel_fd = open("/kmodel/detect.kmodel",O_RDONLY);
model_data = (unsigned char *)malloc(KMODEL_SIZE + 255);
if(NULL ==model_data)
{
kmodel_fd = open(kmodel_path, O_RDONLY);
model_data = (unsigned char *)malloc(kmodel_size + 255);
if (NULL == model_data) {
printf("model_data apply memory fail !!");
return ;
}
memset(model_data,0,KMODEL_SIZE + 255);
if (kmodel_fd>= 0)
{
size = read(kmodel_fd, model_data, KMODEL_SIZE);
if(size != KMODEL_SIZE)
{
printf("read kmodel error size %d\n",size);
}
else
{
printf("read kmodel success");
}
}
else
{
return;
}
memset(model_data, 0, kmodel_size + 255);
if (kmodel_fd >= 0) {
size = read(kmodel_fd, model_data, kmodel_size);
if (size != kmodel_size) {
printf("read kmodel error size %d\n", size);
} else {
printf("read kmodel success");
}
} else {
free(model_data);
printf("open kmodel fail");
}
}
#ifdef __RT_THREAD_H__
MSH_CMD_EXPORT(kmodel_load,kmodel load memory);
MSH_CMD_EXPORT(kmodel_load, kmodel load memory);
#endif

214
APP_Framework/Framework/knowing/kpu-postprocessing/yolov2/region_layer.c

@ -1,66 +1,63 @@
#include <stdlib.h>
#include "region_layer.h"
#include <math.h>
#include <stdio.h>
#include "region_layer.h"
#include <stdlib.h>
typedef struct
{
typedef struct {
float x;
float y;
float w;
float h;
} box_t;
typedef struct
{
typedef struct {
int index;
int class;
float **probs;
} sortable_box_t;
int region_layer_init(region_layer_t *rl, int width, int height, int channels, int origin_width, int origin_height)
{
int flag = 0;
rl->coords = 4;
rl->image_width = 320;
rl->image_height = 240;
/* As no more parameter adding to this function,
image width(height) is regarded as net input shape as well as image capture from sensor.
If net input did not match sensor input, `dvp_set_image_size` function can set sensor output shape.
*/
rl->image_width = origin_width;
rl->image_height = origin_height;
rl->classes = channels / 5 - 5;
rl->net_width = origin_width;
rl->net_height = origin_height;
rl->layer_width = width;
rl->layer_height = height;
rl->boxes_number = (rl->layer_width * rl->layer_height * rl->anchor_number);
rl->boxes_number = (rl->layer_width * rl->layer_height * rl->anchor_number);
rl->output_number = (rl->boxes_number * (rl->classes + rl->coords + 1));
rl->output = malloc(rl->output_number * sizeof(float));
if (rl->output == NULL)
{
if (rl->output == NULL) {
flag = -1;
goto malloc_error;
}
rl->boxes = malloc(rl->boxes_number * sizeof(box_t));
if (rl->boxes == NULL)
{
if (rl->boxes == NULL) {
flag = -2;
goto malloc_error;
}
rl->probs_buf = malloc(rl->boxes_number * (rl->classes + 1) * sizeof(float));
if (rl->probs_buf == NULL)
{
if (rl->probs_buf == NULL) {
flag = -3;
goto malloc_error;
}
rl->probs = malloc(rl->boxes_number * sizeof(float *));
if (rl->probs == NULL)
{
if (rl->probs == NULL) {
flag = -4;
goto malloc_error;
}
for (uint32_t i = 0; i < rl->boxes_number; i++)
rl->probs[i] = &(rl->probs_buf[i * (rl->classes + 1)]);
for (uint32_t i = 0; i < rl->boxes_number; i++) rl->probs[i] = &(rl->probs_buf[i * (rl->classes + 1)]);
return 0;
malloc_error:
free(rl->output);
@ -78,24 +75,20 @@ void region_layer_deinit(region_layer_t *rl)
free(rl->probs);
}
static inline float sigmoid(float x)
{
return 1.f / (1.f + expf(-x));
}
static inline float sigmoid(float x) { return 1.f / (1.f + expf(-x)); }
static void activate_array(region_layer_t *rl, int index, int n)
{
float *output = &rl->output[index];
float *input = &rl->input[index];
for (int i = 0; i < n; ++i)
output[i] = sigmoid(input[i]);
for (int i = 0; i < n; ++i) output[i] = sigmoid(input[i]);
}
static int entry_index(region_layer_t *rl, int location, int entry)
{
int wh = rl->layer_width * rl->layer_height;
int n = location / wh;
int n = location / wh;
int loc = location % wh;
return n * wh * (rl->coords + rl->classes + 1) + entry * wh + loc;
@ -109,10 +102,8 @@ static void softmax(region_layer_t *rl, float *input, int n, int stride, float *
float sum = 0;
float largest_i = input[0];
for (i = 0; i < n; ++i)
{
if (input[i * stride] > largest_i)
largest_i = input[i * stride];
for (i = 0; i < n; ++i) {
if (input[i * stride] > largest_i) largest_i = input[i * stride];
}
for (i = 0; i < n; ++i) {
@ -121,17 +112,16 @@ static void softmax(region_layer_t *rl, float *input, int n, int stride, float *
sum += e;
output[i * stride] = e;
}
for (i = 0; i < n; ++i)
output[i * stride] /= sum;
for (i = 0; i < n; ++i) output[i * stride] /= sum;
}
static void softmax_cpu(region_layer_t *rl, float *input, int n, int batch, int batch_offset, int groups, int stride, float *output)
static void softmax_cpu(region_layer_t *rl, float *input, int n, int batch, int batch_offset, int groups, int stride,
float *output)
{
int g, b;
for (b = 0; b < batch; ++b) {
for (g = 0; g < groups; ++g)
softmax(rl, input + b * batch_offset + g, n, stride, output + b * batch_offset + g);
for (g = 0; g < groups; ++g) softmax(rl, input + b * batch_offset + g, n, stride, output + b * batch_offset + g);
}
}
@ -139,11 +129,9 @@ static void forward_region_layer(region_layer_t *rl)
{
int index;
for (index = 0; index < rl->output_number; index++)
rl->output[index] = rl->input[index];
for (index = 0; index < rl->output_number; index++) rl->output[index] = rl->input[index];
for (int n = 0; n < rl->anchor_number; ++n)
{
for (int n = 0; n < rl->anchor_number; ++n) {
index = entry_index(rl, n * rl->layer_width * rl->layer_height, 0);
activate_array(rl, index, 2 * rl->layer_width * rl->layer_height);
index = entry_index(rl, n * rl->layer_width * rl->layer_height, 4);
@ -151,9 +139,8 @@ static void forward_region_layer(region_layer_t *rl)
}
index = entry_index(rl, 0, rl->coords + 1);
softmax_cpu(rl, rl->input + index, rl->classes, rl->anchor_number,
rl->output_number / rl->anchor_number, rl->layer_width * rl->layer_height,
rl->layer_width * rl->layer_height, rl->output + index);
softmax_cpu(rl, rl->input + index, rl->classes, rl->anchor_number, rl->output_number / rl->anchor_number,
rl->layer_width * rl->layer_height, rl->layer_width * rl->layer_height, rl->output + index);
}
static void correct_region_boxes(region_layer_t *rl, box_t *boxes)
@ -166,8 +153,7 @@ static void correct_region_boxes(region_layer_t *rl, box_t *boxes)
int new_w = 0;
int new_h = 0;
if (((float)net_width / image_width) <
((float)net_height / image_height)) {
if (((float)net_width / image_width) < ((float)net_height / image_height)) {
new_w = net_width;
new_h = (image_height * net_width) / image_width;
} else {
@ -177,10 +163,8 @@ static void correct_region_boxes(region_layer_t *rl, box_t *boxes)
for (int i = 0; i < boxes_number; ++i) {
box_t b = boxes[i];
b.x = (b.x - (net_width - new_w) / 2. / net_width) /
((float)new_w / net_width);
b.y = (b.y - (net_height - new_h) / 2. / net_height) /
((float)new_h / net_height);
b.x = (b.x - (net_width - new_w) / 2. / net_width) / ((float)new_w / net_width);
b.y = (b.y - (net_height - new_h) / 2. / net_height) / ((float)new_h / net_height);
b.w *= (float)net_width / new_w;
b.h *= (float)net_height / new_h;
boxes[i] = b;
@ -207,34 +191,29 @@ static void get_region_boxes(region_layer_t *rl, float *predictions, float **pro
uint32_t coords = rl->coords;
float threshold = rl->threshold;
for (int i = 0; i < layer_width * layer_height; ++i)
{
for (int i = 0; i < layer_width * layer_height; ++i) {
int row = i / layer_width;
int col = i % layer_width;
for (int n = 0; n < anchor_number; ++n)
{
for (int n = 0; n < anchor_number; ++n) {
int index = n * layer_width * layer_height + i;
for (int j = 0; j < classes; ++j)
probs[index][j] = 0;
for (int j = 0; j < classes; ++j) probs[index][j] = 0;
int obj_index = entry_index(rl, n * layer_width * layer_height + i, coords);
int box_index = entry_index(rl, n * layer_width * layer_height + i, 0);
float scale = predictions[obj_index];
float scale = predictions[obj_index];
boxes[index] = get_region_box(predictions, rl->anchor, n, box_index, col, row,
layer_width, layer_height, layer_width * layer_height);
boxes[index] = get_region_box(predictions, rl->anchor, n, box_index, col, row, layer_width, layer_height,
layer_width * layer_height);
float max = 0;
for (int j = 0; j < classes; ++j)
{
for (int j = 0; j < classes; ++j) {
int class_index = entry_index(rl, n * layer_width * layer_height + i, coords + 1 + j);
float prob = scale * predictions[class_index];
probs[index][j] = (prob > threshold) ? prob : 0;
if (prob > max)
max = prob;
if (prob > max) max = prob;
}
probs[index][classes] = max;
}
@ -257,11 +236,11 @@ static int nms_comparator(void *pa, void *pb)
static float overlap(float x1, float w1, float x2, float w2)
{
float l1 = x1 - w1/2;
float l2 = x2 - w2/2;
float l1 = x1 - w1 / 2;
float l2 = x2 - w2 / 2;
float left = l1 > l2 ? l1 : l2;
float r1 = x1 + w1/2;
float r2 = x2 + w2/2;
float r1 = x1 + w1 / 2;
float r2 = x2 + w2 / 2;
float right = r1 < r2 ? r1 : r2;
return right - left;
@ -272,8 +251,7 @@ static float box_intersection(box_t a, box_t b)
float w = overlap(a.x, a.w, b.x, b.w);
float h = overlap(a.y, a.h, b.y, b.h);
if (w < 0 || h < 0)
return 0;
if (w < 0 || h < 0) return 0;
return w * h;
}
@ -285,10 +263,7 @@ static float box_union(box_t a, box_t b)
return u;
}
static float box_iou(box_t a, box_t b)
{
return box_intersection(a, b) / box_union(a, b);
}
static float box_iou(box_t a, box_t b) { return box_intersection(a, b) / box_union(a, b); }
static void do_nms_sort(region_layer_t *rl, box_t *boxes, float **probs)
{
@ -298,30 +273,23 @@ static void do_nms_sort(region_layer_t *rl, box_t *boxes, float **probs)
int i, j, k;
sortable_box_t s[boxes_number];
for (i = 0; i < boxes_number; ++i)
{
for (i = 0; i < boxes_number; ++i) {
s[i].index = i;
s[i].class = 0;
s[i].probs = probs;
}
for (k = 0; k < classes; ++k)
{
for (i = 0; i < boxes_number; ++i)
s[i].class = k;
for (k = 0; k < classes; ++k) {
for (i = 0; i < boxes_number; ++i) s[i].class = k;
qsort(s, boxes_number, sizeof(sortable_box_t), nms_comparator);
for (i = 0; i < boxes_number; ++i)
{
if (probs[s[i].index][k] == 0)
continue;
for (i = 0; i < boxes_number; ++i) {
if (probs[s[i].index][k] == 0) continue;
box_t a = boxes[s[i].index];
for (j = i + 1; j < boxes_number; ++j)
{
for (j = i + 1; j < boxes_number; ++j) {
box_t b = boxes[s[j].index];
if (box_iou(a, b) > nms_value)
probs[s[j].index][k] = 0;
if (box_iou(a, b) > nms_value) probs[s[j].index][k] = 0;
}
}
}
@ -332,11 +300,9 @@ static int max_index(float *a, int n)
int i, max_i = 0;
float max = a[0];
for (i = 1; i < n; ++i)
{
if (a[i] > max)
{
max = a[i];
for (i = 1; i < n; ++i) {
if (a[i] > max) {
max = a[i];
max_i = i;
}
}
@ -351,14 +317,12 @@ static void region_layer_output(region_layer_t *rl, obj_info_t *obj_info)
uint32_t boxes_number = rl->boxes_number;
float threshold = rl->threshold;
box_t *boxes = (box_t *)rl->boxes;
for (int i = 0; i < rl->boxes_number; ++i)
{
int class = max_index(rl->probs[i], rl->classes);
for (int i = 0; i < rl->boxes_number; ++i) {
int class = max_index(rl->probs[i], rl->classes);
float prob = rl->probs[i][class];
if (prob > threshold)
{
if (prob > threshold) {
box_t *b = boxes + i;
obj_info->obj[obj_number].x1 = b->x * image_width - (b->w * image_width / 2);
obj_info->obj[obj_number].y1 = b->y * image_height - (b->h * image_height / 2);
@ -380,7 +344,8 @@ void region_layer_run(region_layer_t *rl, obj_info_t *obj_info)
region_layer_output(rl, obj_info);
}
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color)
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color, uint16_t image_width,
uint16_t image_height)
{
uint32_t data = ((uint32_t)color << 16) | (uint32_t)color;
uint32_t *addr1, *addr2, *addr3, *addr4, x1, y1, x2, y2;
@ -390,48 +355,41 @@ void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t co
x2 = obj_info->obj[index].x2;
y2 = obj_info->obj[index].y2;
if (x1 <= 0)
x1 = 1;
if (x2 >= 319)
x2 = 318;
if (y1 <= 0)
y1 = 1;
if (y2 >= 239)
y2 = 238;
addr1 = gram + (320 * y1 + x1) / 2;
addr2 = gram + (320 * y1 + x2 - 8) / 2;
addr3 = gram + (320 * (y2 - 1) + x1) / 2;
addr4 = gram + (320 * (y2 - 1) + x2 - 8) / 2;
for (uint32_t i = 0; i < 4; i++)
{
if (x1 <= 0) x1 = 1;
if (x2 >= image_width - 1) x2 = image_width - 2;
if (y1 <= 0) y1 = 1;
if (y2 >= image_height - 1) y2 = image_height - 2;
addr1 = gram + (image_width * y1 + x1) / 2;
addr2 = gram + (image_width * y1 + x2 - 8) / 2;
addr3 = gram + (image_width * (y2 - 1) + x1) / 2;
addr4 = gram + (image_width * (y2 - 1) + x2 - 8) / 2;
for (uint32_t i = 0; i < 4; i++) {
*addr1 = data;
*(addr1 + 160) = data;
*(addr1 + image_width / 2) = data;
*addr2 = data;
*(addr2 + 160) = data;
*(addr2 + image_width / 2) = data;
*addr3 = data;
*(addr3 + 160) = data;
*(addr3 + image_width / 2) = data;
*addr4 = data;
*(addr4 + 160) = data;
*(addr4 + image_width / 2) = data;
addr1++;
addr2++;
addr3++;
addr4++;
}
addr1 = gram + (320 * y1 + x1) / 2;
addr2 = gram + (320 * y1 + x2 - 2) / 2;
addr3 = gram + (320 * (y2 - 8) + x1) / 2;
addr4 = gram + (320 * (y2 - 8) + x2 - 2) / 2;
for (uint32_t i = 0; i < 8; i++)
{
addr1 = gram + (image_width * y1 + x1) / 2;
addr2 = gram + (image_width * y1 + x2 - 2) / 2;
addr3 = gram + (image_width * (y2 - 8) + x1) / 2;
addr4 = gram + (image_width * (y2 - 8) + x2 - 2) / 2;
for (uint32_t i = 0; i < 8; i++) {
*addr1 = data;
*addr2 = data;
*addr3 = data;
*addr4 = data;
addr1 += 160;
addr2 += 160;
addr3 += 160;
addr4 += 160;
addr1 += image_width / 2;
addr2 += image_width / 2;
addr3 += image_width / 2;
addr4 += image_width / 2;
}
}

2
APP_Framework/Framework/knowing/kpu-postprocessing/yolov2/region_layer.h

@ -44,6 +44,6 @@ typedef struct
int region_layer_init(region_layer_t *rl, int width, int height, int channels, int origin_width, int origin_height);
void region_layer_deinit(region_layer_t *rl);
void region_layer_run(region_layer_t *rl, obj_info_t *obj_info);
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color);
void draw_edge(uint32_t *gram, obj_info_t *obj_info, uint32_t index, uint16_t color, uint16_t image_width, uint16_t image_height);
#endif // _REGION_LAYER

39
Ubiquitous/RT_Thread/bsp/k210/.config

@ -237,7 +237,8 @@ CONFIG_RT_WLAN_WORKQUEUE_THREAD_PRIO=15
# POSIX layer and C standard library
#
CONFIG_RT_USING_LIBC=y
# CONFIG_RT_USING_PTHREADS is not set
CONFIG_RT_USING_PTHREADS=y
CONFIG_PTHREAD_NUM_MAX=8
CONFIG_RT_USING_POSIX=y
# CONFIG_RT_USING_POSIX_MMAP is not set
# CONFIG_RT_USING_POSIX_TERMIOS is not set
@ -379,9 +380,27 @@ CONFIG_BSP_SPI1_USING_SS1=y
CONFIG_BSP_SPI1_SS1_PIN=8
# CONFIG_BSP_SPI1_USING_SS2 is not set
# CONFIG_BSP_SPI1_USING_SS3 is not set
# CONFIG_BSP_USING_LCD is not set
CONFIG_BSP_USING_LCD=y
CONFIG_BSP_LCD_CS_PIN=36
CONFIG_BSP_LCD_WR_PIN=39
CONFIG_BSP_LCD_DC_PIN=38
CONFIG_BSP_LCD_RST_PIN=37
CONFIG_BSP_LCD_X_MAX=240
CONFIG_BSP_LCD_Y_MAX=320
CONFIG_BSP_USING_SDCARD=y
# CONFIG_BSP_USING_DVP is not set
CONFIG_BSP_USING_DVP=y
#
# The default pin assignment is based on the Maix Duino K210 development board
#
CONFIG_BSP_DVP_SCCB_SDA_PIN=40
CONFIG_BSP_DVP_SCCB_SCLK_PIN=41
CONFIG_BSP_DVP_CMOS_RST_PIN=42
CONFIG_BSP_DVP_CMOS_VSYNC_PIN=43
CONFIG_BSP_DVP_CMOS_PWDN_PIN=44
CONFIG_BSP_DVP_CMOS_XCLK_PIN=46
CONFIG_BSP_DVP_CMOS_PCLK_PIN=47
CONFIG_BSP_DVP_CMOS_HREF_PIN=45
#
# Kendryte SDK Config
@ -392,7 +411,7 @@ CONFIG_PKG_KENDRYTE_SDK_VERNUM=0x0055
# More Drivers
#
# CONFIG_PKG_USING_RW007 is not set
# CONFIG_DRV_USING_OV2640 is not set
CONFIG_DRV_USING_OV2640=y
#
# APP_Framework
@ -424,7 +443,7 @@ CONFIG_MAIN_KTASK_STACK_SIZE=1024
#
# knowing app
#
# CONFIG_APPLICATION_KNOWING is not set
CONFIG_FACE_DETECT=y
#
# sensor app
@ -438,9 +457,17 @@ CONFIG_TRANSFORM_LAYER_ATTRIUBUTE=y
CONFIG_ADD_XIUOS_FETURES=y
# CONFIG_ADD_NUTTX_FETURES is not set
# CONFIG_ADD_RTTHREAD_FETURES is not set
# CONFIG_SUPPORT_SENSOR_FRAMEWORK is not set
CONFIG_SUPPORT_SENSOR_FRAMEWORK=y
# CONFIG_SENSOR_CO2 is not set
# CONFIG_SENSOR_PM is not set
# CONFIG_SENSOR_VOICE is not set
# CONFIG_SENSOR_TEMPERATURE is not set
# CONFIG_SENSOR_HUMIDITY is not set
# CONFIG_SUPPORT_CONNECTION_FRAMEWORK is not set
CONFIG_SUPPORT_KNOWING_FRAMEWORK=y
# CONFIG_USING_TENSORFLOWLITEMICRO is not set
CONFIG_USING_KPU_POSTPROCESSING=y
CONFIG_USING_YOLOV2=y
# CONFIG_SUPPORT_CONTROL_FRAMEWORK is not set
#

228
Ubiquitous/RT_Thread/bsp/k210/.gitignore

@ -0,0 +1,228 @@
# this
*.old
*.dblite
cconfig.h
*.bin
*.map
# rtconfig.h
# .config
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook